Skip to main content

Dietary Salt Intake and Cardiovascular Disease: Summarizing the Evidence

Abstract

We present a narrative review of the literature linking dietary salt intake with cardiovascular health outcomes in humans and list the tools and strategies to reduce salt intake at the population level. There is a strong agreement among experts that dietary salt intake should be reduced, targeting average population levels less than 5 g per day. The main aim of this reduction is a decline in cardiovascular morbidity and mortality. Experimental data clearly show that reducing salt intake lowers blood pressure. Considering that high blood pressure is a major cardiovascular risk factor, this provides indirect evidence that salt reduction should improve cardiovascular health.1 There is also recent direct evidence that reducing salt intake reduces the incidence of cardiovascular disease. Direct evidence linking reduction in salt intake with decreased overall and cardiovascular mortality is more limited and disputed and the data for stroke are inconsistent. Thus, there is a debate on the quality and nature of the available evidence, particularly on the magnitude of the benefit provided by the achievable reduction in salt intake. Yet, there are no known deleterious consequences of the proposed reduction in salt intake. Several countries have adopted policies aiming at reducing salt intake in the general population. The relevant tools and strategies are directed to both the food industry and the consumers. At the industry level, the most efficient measure is legislation on the salt content of selected foods, an approach much more (cost) effective than voluntary reductions. None of the interventions aiming at reducing salt intake has been rigorously evaluated. In view of recurrent controversies, any intervention in this field should be accompanied by an appropriate monitoring and evaluation program.

References

  1. 1.

    Law MR, Frost CD, Wald NJ. By how much does dietary salt reduction lower blood pressure? III—Analysis of data from trials of salt reduction. BMJ. 1991;302:819–24.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  2. 2.

    World Health Organization. The global burden of disease: 2004 update. Geneva, Switzerland: WHO; 2004.

    Google Scholar 

  3. 3.

    World Health Organization. Creating an enabling environment for population-based salt reduction strategies: report of a joint technical meeting held by WHO and the Food Standards Agency, United Kingdom. Geneva, Switzerland: WHO Press; 2010.

    Google Scholar 

  4. 4.

    Webster JL, Dunford EK, Hawkes C, Neal BC. Salt reduction initiatives around the world. J Hypertens. 2011;29:1043–50.

    CAS  Article  PubMed  Google Scholar 

  5. 5.

    Taubes G. The (political) science of salt. Science. 1998;281:898–901, 903–7.

    CAS  Article  PubMed  Google Scholar 

  6. 6.

    Stolarz-Skrzypek K, Kuznetsova T, Thijs L, Tikhonoff V, Seidlerova J, Richart T, et al. Fatal and nonfatal outcomes, incidence of hypertension, and blood pressure changes in relation to urinary sodium excretion. JAMA. 2011;305:1777–85.

    CAS  Article  PubMed  Google Scholar 

  7. 7.

    Taylor RS, Ashton KE, Moxham T, Hooper L, Ebrahim S. Reduced dietary salt for the prevention of cardiovascular disease. Cochrane Database Syst Rev. 2011(7):CD009217.

    Google Scholar 

  8. 8.

    He FJ, MacGregor GA. Salt reduction lowers cardiovascular risk: meta-analysis of outcome trials. Lancet. 2011;378:380–2.

    Article  PubMed  Google Scholar 

  9. 9.

    Forte JG, Miguel JM, Miguel MJ, de Padua F, Rose G. Salt and blood pressure: a community trial. J Hum Hypertens. 1989;3:179–84.

    CAS  PubMed  Google Scholar 

  10. 10.

    Staessen J, Bulpitt CJ, Fagard R, Joossens JV, Lijnen P, Amery A. Salt intake and blood pressure in the general population: a controlled intervention trial in two towns. J Hypertens. 1988;6:965–73.

    CAS  Article  PubMed  Google Scholar 

  11. 11.

    Bibbins-Domingo K, Chertow GM, Coxson PG, Moran A, Lightwood JM, Pletcher MJ, et al. Projected effect of dietary salt reductions on future cardiovascular disease. N Engl J Med. 2010;362:590–9.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Asaria P, Chisholm D, Mathers C, Ezzati M, Beaglehole R. Chronic disease prevention: health effects and financial costs of strategies to reduce salt intake and control tobacco use. Lancet. 2007;370:2044–53.

    Article  PubMed  Google Scholar 

  13. 13.

    Brown IJ, Tzoulaki I, Candeias V, Elliott P. Salt intakes around the world: implications for public health. Int J Epidemiol. 2009;38:791–813.

    Article  PubMed  Google Scholar 

  14. 14.

    Ambard L, Beaujard E. Causes de l’hypertension artérielle. Arch Gen Med. 1:520–33.

  15. 15.

    Allen FM. Arterial hypertension. J Am Med Assoc. 1920;74:652.

    Article  Google Scholar 

  16. 16.

    Kempner W. Treatment of hypertensive vascular disease with rice diet. Am J Med. 1948;4:545–77.

    CAS  Article  PubMed  Google Scholar 

  17. 17.

    Dahl LK. Possible role of salt intake in the development of arterial hypertension. In: Cottier P, Bock DK, editors. Essential Hypertension, an International Symposium. Berlin: Springer-Verlag; 1960.

    Google Scholar 

  18. 18.

    Froment A, Milton H, Gravier C. Relationship of sodium intake and essential hypertension. Rev Epidemiol Sante Publique. 1979;27:437–54.

    CAS  PubMed  Google Scholar 

  19. 19.

    Intersalt: an international study of electrolyte excretion and blood pressure. Results for 24 hour urinary sodium and potassium excretion. Intersalt Cooperative Research Group. BMJ. 1988;297:319–28.

    Article  Google Scholar 

  20. 20.

    Frost CD, Law MR, Wald NJ. By how much does dietary salt reduction lower blood pressure? II—Analysis of observational data within populations. BMJ. 1991;302:815–8.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Zhao L, Stamler J, Yan LL, Zhou B, Wu Y, Liu K, et al. Blood pressure differences between northern and southern Chinese: role of dietary factors: the International Study on Macronutrients and Blood Pressure. Hypertension. 2004;43:1332–7.

    CAS  Article  PubMed  Google Scholar 

  22. 22.

    Machnik A, Neuhofer W, Jantsch J, Dahlmann A, Tammela T, Machura K, et al. Macrophages regulate salt-dependent volume and blood pressure by a vascular endothelial growth factor-C-dependent buffering mechanism. Nat Med. 2009;15:545–52.

    CAS  Article  PubMed  Google Scholar 

  23. 23.

    Guyton AC. Renal function curve—a key to understanding the pathogenesis of hypertension. Hypertension. 1987;10:1–6.

    CAS  Article  PubMed  Google Scholar 

  24. 24.

    Guyton AC. Dominant role of the kidneys and accessory role of whole-body autoregulation in the pathogenesis of hypertension. Am J Hypertens. 1989;2:575–85.

    CAS  Article  PubMed  Google Scholar 

  25. 25.

    Guyton AC, Coleman TG, Cowley AV, Jr., Scheel KW, Manning RD, Jr., Norman RA, Jr. Arterial pressure regulation. Overriding dominance of the kidneys in long-term regulation and in hypertension. Am J Med. 1972;52:584–94.

    CAS  Article  PubMed  Google Scholar 

  26. 26.

    Kimura G, Brenner BM. A method for distinguishing salt-sensitive from non-salt-sensitive forms of human and experimental hypertension. Curr Opin Nephrol Hypertens. 1993;2:341–9.

    CAS  Article  PubMed  Google Scholar 

  27. 27.

    Johnson RJ, Rodriguez-Iturbe B, Nakagawa T, Kang DH, Feig DI, Herrera-Acosta J. Subtle renal injury is likely a common mechanism for salt-sensitive essential hypertension. Hypertension. 2005;45:326–30.

    CAS  Article  PubMed  Google Scholar 

  28. 28.

    Johnson RJ, Schreiner GF. Hypothesis: the role of acquired tubulointerstitial disease in the pathogenesis of salt-dependent hypertension. Kidney Int. 1997;52:1169–79.

    CAS  Article  PubMed  Google Scholar 

  29. 29.

    Johnson RJ, Rodriguez-Iturbe B, Kang DH, Feig DI, Herrera-Acosta J. A unifying pathway for essential hypertension. Am J Hypertens. 2005;18:431–40.

    Article  PubMed  Google Scholar 

  30. 30.

    Lifton RP. Molecular genetics of human blood pressure variation. Science. 1996;272:676–80.

    CAS  Article  PubMed  Google Scholar 

  31. 31.

    Meneton P, Jeunemaitre X, de Wardener HE, MacGregor GA. Links between dietary salt intake, renal salt handling, blood pressure, and cardiovascular diseases. Physiol Rev. 2005;85:679–715.

    CAS  Article  PubMed  Google Scholar 

  32. 32.

    Cook NR, Cutler JA, Obarzanek E, Buring JE, Rexrode KM, Kumanyika SK, et al. Long term effects of dietary sodium reduction on cardiovascular disease outcomes: observational follow-up of the trials of hypertension prevention (TOHP). BMJ. 2007;334:885–8.

    Article  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Chang HY, Hu YW, Yue CS, Wen YW, Yeh WT, Hsu LS, et al. Effect of potassium-enriched salt on cardiovascular mortality and medical expenses of elderly men. Am J Clin Nutr. 2006;83:1289–96.

    CAS  PubMed  Google Scholar 

  34. 34.

    Alderman MH, Cohen H, Madhavan S. Dietary sodium intake and mortality: the National Health and Nutrition Examination Survey (NHANES I). Lancet. 1998;35:781–5.

    Article  Google Scholar 

  35. 35.

    Geleijnse JM, Witteman JC, Stijnen T, Kloos MW, Hofman A, Grobbee DE. Sodium and potassium intake and risk of cardiovascular events and all-cause mortality: the Rotterdam Study. Eur J Epidemiol. 2007;22:763–70.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  36. 36.

    He J, Ogden LG, Vupputuri S, Bazzano LA, Loria C, Whelton PK. Dietary sodium intake and subsequent risk of cardiovascular disease in overweight adults. JAMA. 1999;282:2027–34.

    CAS  Article  PubMed  Google Scholar 

  37. 37.

    Tunstall-Pedoe H, Woodward M, Tavendale R, A’Brook R, McCluskey MK. Comparison of the prediction by 27 different factors of coronary heart disease and death in men and women of the Scottish Heart Health Study: cohort study. BMJ. 1997;315:722–9.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Tuomilehto J, Jousilahti P, Rastenyte D, Moltchanov V, Tanskanen A, Pietinen P, et al. Urinary sodium excretion and cardiovascular mortality in Finland: a prospective study. Lancet. 2001;357:848–51.

    CAS  Article  PubMed  Google Scholar 

  39. 39.

    Poulter NR. Dietary sodium intake and mortality: NHANES. The Faculty 31st International Society and Federation of Cardiology 10-day Teaching Seminar in Cardiovascular Disease, Epidemiology and Prevention. National Health and Nutrition Examination Survey. Lancet. 1998;352:987–8.

    CAS  Article  PubMed  Google Scholar 

  40. 40.

    Bogers RP, Bemelmans WJ, Hoogenveen RT, Boshuizen HC, Woodward M, Knekt P, et al. Association of overweight with increased risk of coronary heart disease partly independent of blood pressure and cholesterol levels: a meta-analysis of 21 cohort studies including more than 300 000 persons. Arch Intern Med. 2007;167:1720–8.

    Article  PubMed  Google Scholar 

  41. 41.

    Strazzullo P, D’Elia L, Kandala NB, Cappuccio FP. Salt intake, stroke, and cardiovascular disease: meta-analysis of prospective studies. BMJ. 2009;339:b4567.

    Article  Google Scholar 

  42. 42.

    Alderman MH, Madhavan S, Cohen H, Sealey JE, Laragh JH. Low urinary sodium is associated with greater risk of myocardial infarction among treated hypertensive men. Hypertension. 1995;25:1144–52.

    CAS  Article  PubMed  Google Scholar 

  43. 43.

    Kagan A, Popper JS, Rhoads GG, Yano K. Dietary and other risk factors for stroke in Hawaiian Japanese men. Stroke. 1985;16:390–6.

    CAS  Article  PubMed  Google Scholar 

  44. 44.

    Larsson SC, Virtanen MJ, Mars M, Mannisto S, Pietinen P, Albanes D, et al. Magnesium, calcium, potassium, and sodium intakes and risk of stroke in male smokers. Arch Intern Med. 2008;168:459–65.

    CAS  Article  PubMed  Google Scholar 

  45. 45.

    Nagata C, Takatsuka N, Shimizu N, Shimizu H. Sodium intake and risk of death from stroke in Japanese men and women. Stroke. 2004;35:1543–7.

    Article  PubMed  Google Scholar 

  46. 46.

    Ascherio A, Rimm EB, Hernan MA, Giovannucci EL, Kawachi I, Stampfer MJ, et al. Intake of potassium, magnesium, calcium, and fiber and risk of stroke among US men. Circulation. 1998;98:1198–204.

    CAS  Article  PubMed  Google Scholar 

  47. 47.

    Sasaki S, Zhang XH, Kesteloot H. Dietary sodium, potassium, saturated fat, alcohol, and stroke mortality. Stroke. 1995;26:783–9.

    CAS  Article  PubMed  Google Scholar 

  48. 48.

    Yamori Y, Liu L, Mizushima S, Ikeda K, Nara Y. Male cardiovascular mortality and dietary markers in 25 population samples of 16 countries. J Hypertens. 2006;24:1499–505.

    CAS  Article  PubMed  Google Scholar 

  49. 49.

    Yamori Y, Nara Y, Mizushima S, Sawamura M, Horie R. Nutritional factors for stroke and major cardiovascular diseases: international epidemiological comparison of dietary prevention. Health Rep. 1994;6:22–7.

    CAS  PubMed  Google Scholar 

  50. 50.

    Levy D, Garrison RJ, Savage DD, Kannel WB, Castelli WP. Prognostic implications of echocardiographically determined left ventricular mass in the Framingham Heart Study. N Engl J Med. 1990;322:1561–6.

    CAS  Article  PubMed  Google Scholar 

  51. 51.

    Verdecchia P, Porcellati C, Reboldi G, Gattobigio R, Borgioni C, Pearson TA, et al. Left ventricular hypertrophy as an independent predictor of acute cerebrovascular events in essential hypertension. Circulation. 2001;104:2039–44.

    CAS  Article  PubMed  Google Scholar 

  52. 52.

    Verdecchia P, Schillaci G, Borgioni C, Ciucci A, Gattobigio R, Zampi I, et al. Prognostic significance of serial changes in left ventricular mass in essential hypertension. Circulation. 1998;97:48–54.

    CAS  Article  PubMed  Google Scholar 

  53. 53.

    Schmieder RE, Messerli FH, Garavaglia GE, Nunez BD. Dietary salt intake. A determinant of cardiac involvement in essential hypertension. Circulation. 1988;78:951–6.

    CAS  Article  PubMed  Google Scholar 

  54. 54.

    Daniels SD, Meyer RA, Loggie JM. Determinants of cardiac involvement in children and adolescents with essential hypertension. Circulation. 1990;82:1243–8.

    CAS  Article  PubMed  Google Scholar 

  55. 55.

    Ferrara LA, de Simone G, Pasanisi F, Mancini M. Left ventricular mass reduction during salt depletion in arterial hypertension. Hypertension. 1984;6:755–9.

    CAS  Article  PubMed  Google Scholar 

  56. 56.

    Liebson PR, Grandits GA, Dianzumba S, Prineas RJ, Grimm RH, Jr., Neaton JD, et al. Comparison of five antihypertensive monotherapies and placebo for change in left ventricular mass in patients receiving nutritional-hygienic therapy in the Treatment of Mild Hypertension Study (TOMHS). Circulation. 1995;91:698–706.

    CAS  Article  PubMed  Google Scholar 

  57. 57.

    Tsugane S. Salt, salted food intake, and risk of gastric cancer: epidemiologic evidence. Cancer Sci. 2005;96:1–6.

    CAS  Article  PubMed  Google Scholar 

  58. 58.

    Dias-Neto M, Pintalhao M, Ferreira M, Lunet N. Salt intake and risk of gastric intestinal metaplasia: systematic review and meta-analysis. Nutr Cancer. 2010;62:133–47.

    CAS  Article  PubMed  Google Scholar 

  59. 59.

    He FJ, Marrero NM, MacGregor GA. Salt intake is related to soft drink consumption in children and adolescents: a link to obesity? Hypertension. 2008;51:629–34.

    CAS  Article  PubMed  Google Scholar 

  60. 60.

    Cappuccio FP, Kalaitzidis R, Duneclift S, Eastwood JB. Unravelling the links between calcium excretion, salt intake, hypertension, kidney stones and bone metabolism. J Nephrol. 2000;13:169–77.

    CAS  PubMed  Google Scholar 

  61. 61.

    Barton P, Andronis L, Briggs A, McPherson K, Capewell S. Effectiveness and cost effectiveness of cardiovascular disease prevention in whole populations: modelling study. BMJ. 2011;343:d4044.

    Article  Google Scholar 

  62. 62.

    Cobiac LJ, Vos T, Veerman JL. Cost-effectiveness of interventions to reduce dietary salt intake. Heart. 2010;96:1920–5.

    Article  PubMed  Google Scholar 

  63. 63.

    Kelly B, King L, Bauman A, Smith BJ, Flood V. The effects of different regulation systems on television food advertising to children. Aust N Z J Public Health. 2007;31:340–3.

    Article  PubMed  Google Scholar 

  64. 64.

    Adams J, Tyrrell R, Adamson AJ, White M. Socio-economic differences in exposure to television food advertisements in the UK: a cross-sectional study of advertisements broadcast in one television region. Public Health Nutr. 2011;15:1–8.

    Google Scholar 

  65. 65.

    Adams J, Tyrrell R, White M. Do television food advertisements portray advertised foods in a ‘healthy’ food context? Br J Nutr. 2011;105:810–5.

    CAS  Article  PubMed  Google Scholar 

  66. 66.

    Klaus D, Bohm M, Halle M, Kolloch R, Middeke M, Pavenstadt H, et al. [Restriction of salt intake in the whole population promises great long-term benefits]. Dtsch Med Wochenschr. 2009;134:S108–18.

    Article  Google Scholar 

  67. 67.

    Hebden L, King L, Kelly B, Chapman K, Innes-Hughes C. Industry self-regulation of food marketing to children: reading the fine print. Health Promot J Austr. 2010;21:229–35.

    PubMed  Google Scholar 

  68. 68.

    Mytton O, Gray A, Rayner M, Rutter H. Could targeted food taxes improve health? J Epidemiol Community Health. 2007;61:689–94.

    Article  PubMed  PubMed Central  Google Scholar 

  69. 69.

    Nnoaham KE, Sacks G, Rayner M, Mytton O, Gray A. Modelling income group differences in the health and economic impacts of targeted food taxes and subsidies. Int J Epidemiol. 2009;38:1324–33.

    Article  PubMed  Google Scholar 

  70. 70.

    Grimes CA, Riddell LJ, Nowson CA. Consumer knowledge and attitudes to salt intake and labelled salt information. Appetite. 2009;53:189–94.

    Article  PubMed  Google Scholar 

  71. 71.

    Grummer J, Schoenfuss TC. Determining salt concentrations for equivalent water activity in reduced-sodium cheese by use of a model system. J Dairy Sci. 2011;94:4360–5.

    CAS  Article  PubMed  Google Scholar 

  72. 72.

    Reger B, Wootan MG, Booth-Butterfield S. Using mass media to promote healthy eating: A community-based demonstration project. Prev Med. 1999;29:414–21.

    CAS  Article  PubMed  Google Scholar 

  73. 73.

    Reger B, Wootan MG, Booth-Butterfield S. A comparison of different approaches to promote community-wide dietary change. Am J Prev Med. 2000;18:271–5.

    CAS  Article  PubMed  Google Scholar 

  74. 74.

    Elitzak H. Food marketing costs at a glance. Food Reviews: Economic Research Service, United States Department of Agriculture; 2001:47–48.

    Google Scholar 

  75. 75.

    Swiss Pledge, 2010.

  76. 76.

    Adams J, Hennessy-Priest K, Ingimarsdottir S, Sheeshka J, Ostbye T, White M. Food advertising during children’s television in Canada and the UK. Arch Dis Child. 2009;94:658–62.

    CAS  Article  PubMed  Google Scholar 

  77. 77.

    Adams J, Simpson E, White M. Variations in food and drink advertising in UK monthly women’s magazines according to season, magazine type and socio-economic profile of readers: a descriptive study of publications over 12 months. BMC Public Health. 2011;11:368.

    Article  PubMed  PubMed Central  Google Scholar 

  78. 78.

    Van Cauwenberghe E, Maes L, Spittaels H, van Lenthe FJ, Brug J, Oppert JM, et al. Effectiveness of school-based interventions in Europe to promote healthy nutrition in children and adolescents: systematic review of published and ‘grey’ literature. Br J Nutr. 2010;103:781–97.

    Article  PubMed  Google Scholar 

  79. 79.

    Kroeze W, Werkman A, Brug J. A systematic review of randomized trials on the effectiveness of computer-tailored education on physical activity and dietary behaviors. Ann Behav Med. 2006;31:205–23.

    Article  PubMed  Google Scholar 

  80. 80.

    Dallongeville J, Dauchet L, de Mouzon O, Requillart V, Soler LG. Increasing fruit and vegetable consumption: a cost-effectiveness analysis of public policies. Eur J Public Health. 2011;21:69–73.

    Article  PubMed  Google Scholar 

  81. 81.

    Cutler JA, Follmann D, Elliott P, Suh I. An overview of randomized trials of sodium reduction and blood pressure. Hypertension. 1991;17:I27–33.

    Article  Google Scholar 

  82. 82.

    Midgley JP, Matthew AG, Greenwood CM, Logan AG. Effect of reduced dietary sodium on blood pressure: a meta-analysis of randomized controlled trials. JAMA. 1996;275:1590–7.

    CAS  Article  PubMed  Google Scholar 

  83. 83.

    Cutler JA, Follmann D, Allender PS. Randomized trials of sodium reduction: an overview. Am J Clin Nutr. 1997;65:S643S–51.

    Google Scholar 

  84. 84.

    Graudal NA, Galloe AM, Garred P. Effects of sodium restriction on blood pressure, renin, aldosterone, catecholamines, cholesterols, and triglyceride: a meta-analysis. JAMA. 1998;279:1383–91.

    CAS  Article  PubMed  Google Scholar 

  85. 85.

    He FJ, MacGregor GA. Effect of modest salt reduction on blood pressure: a meta-analysis of randomized trials. Implications for public health. J Hum Hypertens. 2002;16:761–70.

    CAS  Article  PubMed  Google Scholar 

  86. 86.

    He FJ, MacGregor GA. Effect of longer-term modest salt reduction on blood pressure. Cochrane Database Syst Rev. 2004(3):CD004937.

    Google Scholar 

  87. 87.

    He FJ, MacGregor GA. Importance of salt in determining blood pressure in children: meta-analysis of controlled trials. Hypertension. 2006;48:861–9.

    CAS  Article  PubMed  Google Scholar 

  88. 88.

    Alderman MH, Cohen H, Madhavan S. Dietary sodium intake and mortality: the National Health and Nutrition Examination Survey (NHANES I). Lancet. 1998;351:781–5.

    CAS  Article  PubMed  Google Scholar 

  89. 89.

    He J, Ogden LG, Vupputuri S, Bazzano LA, Loria C, Whelton PK. Dietary sodium intake and subsequent risk of cardiovascular disease in overweight adults. JAMA. 1999;282:2027–34.

    CAS  Article  PubMed  Google Scholar 

  90. 90.

    Cohen HW, Hailpern SM, Fang J, Alderman MH. Sodium intake and mortality in the NHANES II follow-up study. Am J Med. 2006;119:275 e7–14.

    Article  Google Scholar 

  91. 91.

    Cohen HW, Hailpern SM, Alderman MH. Sodium intake and mortality follow-up in the Third National Health and Nutrition Examination Survey (NHANES III). J Gen Intern Med. 2008;23:1297–302.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Murielle Bochud MD, PhD.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bochud, M., Marques-Vidal, P., Burnier, M. et al. Dietary Salt Intake and Cardiovascular Disease: Summarizing the Evidence. Public Health Rev 33, 530–552 (2011). https://doi.org/10.1007/BF03391649

Download citation

Keywords

  • Salt
  • mortality
  • cardiovascular disease
  • sodium